晶振等效电路图(这个由三极管和晶振构成的电路是怎么工作的)
本文目录
这个由三极管和晶振构成的电路是怎么工作的
你了解三点式振荡电路吗,这个就是典型的电容三点式振荡电路,晶振在这里则等效为一个电感;
在学习及分析这类电路时,要求知识提升了档次,不再去讨论三极管的电压电流大小、方向、放大倍数等,他们不是主要的了,而是讨论这些电抗是如何满足振荡条件;
有兴趣的话就去看看三点式振荡电路,这些就不说了,要说,也只能是复制而已。
stm32f103vc晶振电路原理
晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的.
晶振电路中容阻该如何匹配
大多数电子工程师都见过单片机中如下图所示的形式,一般单片机都会有这样的电路。晶振的两个引脚与芯片(如单片机)内部的反相器相连接,再结合外部的匹配电容CL1、CL2、R1、R2,组成一个皮尔斯振荡器(Pierceoscillator)
上图中,U1为增益很大的反相放大器,CL1、CL2为匹配电容,是电容三点式电路的分压电容,接地点就是分压点。以接地点即分压点为参考点,输入和输出是反相的,但从并联谐振回路即石英晶体两端来看,形成一个正反馈以保证电路持续振荡,它们会稍微影响振荡频率,主要用与微调频率和波形,并影响幅度。X1是晶体,相当于三点式里面的电感
R1是反馈电阻(一般≥1MΩ),它使反相器在振荡初始时处于线性工作区,R2与匹配电容组成网络,提供180度相移,同时起到限制振荡幅度,防止反向器输出对晶振过驱动将其损坏。
这里涉及到晶振的一个非常重要的参数,即负载电容CL(Loadcapacitance),它是电路中跨接晶体两端的总的有效电容(不是晶振外接的匹配电容),主要影响负载谐振频率和等效负载谐振电阻,与晶体一起决定振荡器电路的工作频率,通过调整负载电容,就可以将振荡器的工作频率微调到标称值。
负载电容的公式如下所示:
其中,CS为晶体两个管脚间的寄生电容(ShuntCapacitance)
CD表示晶体振荡电路输出管脚到地的总电容,包括PCB走线电容CPCB、芯片管脚寄生电容CO、外加匹配电容CL2,即CD=CPCB+CO+CL2
CG表示晶体振荡电路输入管脚到地的总电容,包括PCB走线电容CPCB、芯片管脚寄生电容CI、外加匹配电容CL1,即CG=CPCB+CI+CL1
一般CS为1pF左右,CI与CO一般为几个皮法,具体可参考芯片或晶振的数据手册
(这里假设CS=0.8pF,CI=CO=5pF,CPCB=4pF)。
比如规格书上的负载电容值为18pF,则有
则CD=CG=34.4pF,计算出来的匹配电容值CL1=CL2=25pF
51单片机晶振电路工作原理
51单片机系统,外接晶振是必须的(当然也可以外接时钟脉冲,但是很少用),因为单片机的运行必须依赖于稳定的时钟脉冲。但是随着技术的发展,现在很多单片机都已经集成了内部时钟,所以在一般的应用场合,可以不用外接晶振电路了。不过由于内部时钟容易受外界干扰,所以在要求严格的场合,晶振电路还是很有必要的。
该电路不只是有一个晶振,还有两个电容,这两个电容有什么作用呢?
这两个电容一般称为“匹配电容”或者“负载电容”、“谐振电容”。晶振电路中加这两个电容是为了满足谐振条件。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。只有连接合适的电容才能满足晶振的起振要求,晶振才能正常工作。
晶振电路中的两个小电容要怎样选取
晶振电路中的两个小电容叫做晶振负载电容晶振的负载电容大小一般是几个皮法到几十个皮法,需要选用NPO/G0G材质的电容
晶振负载电容怎么确定大小?负载电容的大小不是固定的,需要晶振的规格要求而定,晶振的规格书都标有负载电容的要求,一定要看清楚规格书,选择匹配的负载电容。假如负载电容要求是12.5pF,晶振两端的电容用20pF~24pF就差不多了
选择负载电容的要注意事项:
选择NPO/G0G材质,温度和高频特性更好公差当然是尽量选择小的,最好选择2%或者1%的。欢迎关注@电子产品设计方案,一起享受分享与学习的乐趣!关注我成为朋友一起交流、学习哦记得点赞和评论哦!
晶振的pf值
晶振的PF值是指晶振器的谐振频率与额定频率之比。它用于描述晶振器的稳定性和精度,一般越接近1,说明晶振器的性能越好。PF值可以通过调整晶振器的电容或改变晶振器的频率来调整。在电子电路中,晶振器是一个非常重要的元件,它在数字电路、计算机、通信、测量等领域中广泛应用。因此,了解晶振的PF值对于电路设计和性能优化都非常重要。