晶振接的电容(晶振中的负载电容起什么作用)
本文目录
7PF的时钟晶振选择多大的负载电容
选择时钟晶振的负载电容需要考虑多个因素。一般来说,负载电容的大小会影响晶振的频率稳定性和启动时间。对于7PF的时钟晶振,建议选择一个合适的负载电容,通常在10-30PF之间。具体的选择取决于晶振的制造商提供的规格和推荐值。同时,还需要考虑电路板的布局和环境条件等因素,以确保晶振的性能和可靠性。最好参考晶振的数据手册或咨询相关专业人士,以获得准确的建议。
晶振电路中容阻该如何匹配
大多数电子工程师都见过单片机中如下图所示的形式,一般单片机都会有这样的电路。晶振的两个引脚与芯片(如单片机)内部的反相器相连接,再结合外部的匹配电容CL1、CL2、R1、R2,组成一个皮尔斯振荡器(Pierceoscillator)
上图中,U1为增益很大的反相放大器,CL1、CL2为匹配电容,是电容三点式电路的分压电容,接地点就是分压点。以接地点即分压点为参考点,输入和输出是反相的,但从并联谐振回路即石英晶体两端来看,形成一个正反馈以保证电路持续振荡,它们会稍微影响振荡频率,主要用与微调频率和波形,并影响幅度。X1是晶体,相当于三点式里面的电感
R1是反馈电阻(一般≥1MΩ),它使反相器在振荡初始时处于线性工作区,R2与匹配电容组成网络,提供180度相移,同时起到限制振荡幅度,防止反向器输出对晶振过驱动将其损坏。
这里涉及到晶振的一个非常重要的参数,即负载电容CL(Loadcapacitance),它是电路中跨接晶体两端的总的有效电容(不是晶振外接的匹配电容),主要影响负载谐振频率和等效负载谐振电阻,与晶体一起决定振荡器电路的工作频率,通过调整负载电容,就可以将振荡器的工作频率微调到标称值。
负载电容的公式如下所示:
其中,CS为晶体两个管脚间的寄生电容(ShuntCapacitance)
CD表示晶体振荡电路输出管脚到地的总电容,包括PCB走线电容CPCB、芯片管脚寄生电容CO、外加匹配电容CL2,即CD=CPCB+CO+CL2
CG表示晶体振荡电路输入管脚到地的总电容,包括PCB走线电容CPCB、芯片管脚寄生电容CI、外加匹配电容CL1,即CG=CPCB+CI+CL1
一般CS为1pF左右,CI与CO一般为几个皮法,具体可参考芯片或晶振的数据手册
(这里假设CS=0.8pF,CI=CO=5pF,CPCB=4pF)。
比如规格书上的负载电容值为18pF,则有
则CD=CG=34.4pF,计算出来的匹配电容值CL1=CL2=25pF
晶振中的负载电容起什么作用
1、晶振的负载电容主要作用的抗干扰的功能2、晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容。是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑ic输入端的对地电容。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。
8m晶振配多大的电容
在选择晶振外围元器件时,需要考虑晶振型号、频率、电容等因素。通常,晶振带有一个额定的负载电容范围,一般为其频率的20%~40%。比如,如果您的8MHz晶振额定的负载电容为20pF,那么您可以选择两个10pF或一个22pF的电容进行匹配。不同晶振型号和使用场景可能需要不同的电容值,因此最好查看晶振的手册或联系厂商以获取最准确的外围元器件参数。
晶振多大电阻阻值为正常
答:
晶振多大电阻阻值1M政姆为正常。
并联的1M欧姆的电阻被称作反馈电阻,它为内部的反相器提供直流偏置电压,选值一般为1M欧姆,这没问题。但是,可以查一下单片机内部是否已经包含了这颗电阻,如果已经包含了,则外部就不要再加了。
另外,晶振的负载电容及layout设计需要做好检查,确保没有问题。
最后,常规的检查无效之后,可以配置阻尼电阻Rd来抑制晶振的寄生振荡。
Rd的选值:1/(2*pi*f0*C2),f0为晶振频率。
内部晶振为什么要接12mhz的
内部晶振需要接12MHz的晶振,原因如下:首先,12MHz的晶振是一种常见的频率,它可以提供稳定的计时基准,是数字逻辑电路中的基本时钟源。在许多微控制器和处理器中,需要一个稳定的时钟源来驱动内部的数字逻辑电路。其次,晶振的频率越高,系统的处理速度就越快。因此,对于需要高速处理的应用,选择高频率的晶振是很重要的。12MHz的晶振是一种折中的选择,它能够满足大多数应用的需求,并且具有较好的稳定性和可靠性。最后,不同型号的内部晶振可能有不同的工作电压和负载电容要求。因此,在选择晶振时,需要根据具体的内部晶振型号的规格书进行配置。总之,选择适合的晶振频率可以提高系统的稳定性和可靠性,并且能够保证系统的正常运行。以上信息仅供参考,如有需要,建议咨询相关技术人员。