锁相环 晶振(锁相环可以取代晶振吗)
本文目录
锁相环可以取代晶振吗
锁相环可以在某些情况下取代晶振。晶振是一种稳定的时钟源,广泛应用于电子设备中,但其稳定性和精度有限。而锁相环通过将晶振的频率与参考信号进行比较和调整,可以实现更高的稳定性和精确性。
锁相环能够自动跟踪和纠正晶振的漂移和误差,因此在某些应用中可以取代晶振。
不过,在某些高精度和高稳定性要求的应用中,晶振仍然是更可靠的选择,因为锁相环的性能仍然受限于其参考信号的稳定性。因此,需要根据具体的应用场景来选择晶振或锁相环。
51单片机晶振怎么改
1.首先,了解51单片机晶振的工作原理。晶振是一种通过振荡产生稳定时钟信号的元件,常用于单片机的时钟源。51单片机通常使用12mhz的晶振,它会将振荡信号通过晶振接口输入到单片机内部,作为其运行的时钟源。
2.如果要改变51单片机的晶振频率,首先需要选择合适的晶振。根据实际需求,选择不同频率的晶振,如8mhz、16mhz等。需要注意的是,选择的晶振频率应与单片机的时钟源设定相匹配,否则单片机可能无法正常工作。
3.更换晶振时,首先需要将原有的晶振从单片机上拆下。使用烙铁将晶振引脚与pcb上的焊盘分离,注意避免过度加热,以免损坏其他元件。拆下晶振后,将新的晶振按照正确的方向和引脚对应的焊盘进行焊接。焊接过程中要注意焊接的质量和稳定性,确保引脚与焊盘之间的良好连接。
总结:改变51单片机晶振的步骤包括了解晶振的工作原理,选择合适的晶振频率,以及拆卸原有的晶振并焊接新的晶振。这样可以实现更改51单片机的时钟源,以适应不同的应用需求。
晶振倍频和降频原理
降频:一个晶振只有一个固定频率,但可以通过分频、倍频扩展出许多频率,原信号通过N分频,频率变为原来的1/N,周期变为原来的N倍。
倍频:频率变为N倍,周期变为1/N倍。倍频是利用锁相环(PLL)的原理进行频率的增倍。如STM32单片机外接8M晶振,但是主频却能跑72M。
晶振片什么设备上有
答:晶振片在工业设备的应用主要在于数字系统、数控机床设备、数控激光切割机、钣金设备、印花设备、锁相环系统、调制解调器、船舶、电信、传感器以及磁盘驱动器等中。
晶振片来源于多面体石英棒,先被切成闪闪发光的六面体棒,再经过反复的切割和研磨,石英棒最终被做成一堆薄薄的(厚0.23mm,直径13.98mm)圆片。
时钟晶振电路工作原理
晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
雷达晶振作用
晶振是石英晶体谐振器和石英晶振振荡器的简称,石英晶体谐振器我们一般称它为无源晶振,就是用石英(SiO2)材料做成的石英晶体谐振器(英文:crystal),起产生频率的作用,具有稳定,抗干扰性能良好的,广泛应用于各种电子产品中。石英晶体振荡器我们称呼为有源晶振,石英晶体振荡器(英文:oscillator)是一种能量转换装置--将直流电能转换为具有一定频率的交流电能,其构成的电路叫振荡电。它们之间有本质的不同,不能相互替代。晶振的作用是?
1.首先晶振是一个被动元器件,主要协助主芯片工作的,提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。
2.晶振具有压电效应,即在晶片两极外加电压后晶体会产生变形,反过来如外力使晶片变形,则两极上金属片又会产生电压。如果给晶片加上适当的交变电压,晶片就会产生谐振(谐振频率与石英斜面倾角等有关系,且频率一定。
3.晶振利用一种能把电能和机械能相互转化的晶体,在共振的状态下工作可以提供稳定、精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达30PPM(1PPM是百万分之一)。利用该特性,晶振可以提供较稳定的脉冲,广泛应用于微芯片的时钟电路里。
4.晶振电路在电脑主板上也是比较常见的,主要有时钟晶体振荡电路、实时晶体振荡电路、声卡晶体和网卡晶体等。
晶振是常用器件之一,也是非常重要的器件,主芯片是大脑,那么晶振就是血液,晶振在生成流程上对工艺要求很高,